

Servicing Master Plan – Township of Severn

Water Management Solutions

Land Acknowledgement

"We would like to begin by acknowledging that the land on which we gather, and which the Township of Severn operates, is part of the traditional territory of the Anishinaabeg. For thousands of years, Indigenous peoples have been inhabiting and caring for this land. In particular, we acknowledge the territory of the Ojibway (or Chippewas) peoples. This territory is covered by Lake Simcoe Treaty 16 and the J. Collins land purchase.

We are grateful to have the opportunity to work on this land, and by doing so, give our respect to its first inhabitants."

Introduction

What is the Township of Severn Servicing Master Plan?

The Township of Severn is developing a Servicing Master Plan (SMP) to evaluate water, wastewater, and stormwater servicing strategies to accommodate growth to 2051.

What is the focus?

- Focus on water, wastewater and stormwater infrastructure
- Support the Township's growth plan
- Emphasize on environmental sustainability and resiliency

The purpose of PIC#2 is to:

- Provide an overview of the plan and work completed to date
- Overview of the Servicing Master Plan solutions and evaluation criteria
- Present the preferred servicing recommendations
- Receive your feedback and answer questions

Problem and Opportunity Statement

The Problem and Opportunity Statement is defined as follows:

Following completion of the updated 2022 Official Plan, the Township has identified the intent to direct most forms of development to settlement areas where water, wastewater, and stormwater services are planned or available. The Township of Severn's total population is expected to grow from 14,576 in 2021 to approximately 23,961 by 2051.

This presents the opportunity to identify and select preferred alternative water supply and storage; wastewater collection and treatment; and stormwater management servicing strategies to accommodate growth for a planning horizon which minimizes impacts the natural and social environments and is technically feasible and economically sensible.

Identified Opportunity

How can the Township:

- Identify existing capacity constraints
- Evaluate different servicing alternatives
- Provide solutions to accommodate the planned growth across the Township

Servicing Master Plan Areas

The Township at a Glance:

- Three main settlement areas of Westshore, Coldwater, and Washago
- Five rural settlements areas of Ardtrea, Fesserton, Marchmont, Severn falls, and Port Severn
- Two municipal drinking water systems of Severn Estates and Sandcastle Estates

Settlement Areas

Environmental Assessment Process

Environmental Assessment (EA) Master Plan Process

The Municipal Class Environmental Assessment (MCEA) process was developed to provide municipalities with a risk-based approach to comply with the Environmental Assessment Act for both capital projects and infrastructure maintenance activities. The SMP study will be undertaken in conformance with the Municipal Class EA process. The Master Plan will address Phase 1 and Phase 2 of the Municipal Class EA.

The Class EA defines master plans as long-range plans which integrate infrastructure requirements for existing and future land use with environmental assessment planning principles. These plans examine an infrastructure system or group of related projects in order to outline a framework for planning for subsequent projects and/or developments.

PIC Objectives and Project Schedule

Introduce the SMP study to the public and obtain feedback from local residents, property owners, and community groups

Present existing conditions and areas of concern

Present alternatives and preferred solutions

Project Schedule Timeline

Seek feedback from the public on presented solutions

Phase 1

Identify and Describe the Problem/Opportunity Statement

PIC #1

Public Consultation December 5, 2023

Phase 2

Complete Study Area Inventory Identify and Evaluate Alternative Solutions

PIC #2

Public Consultation May 29, 2024

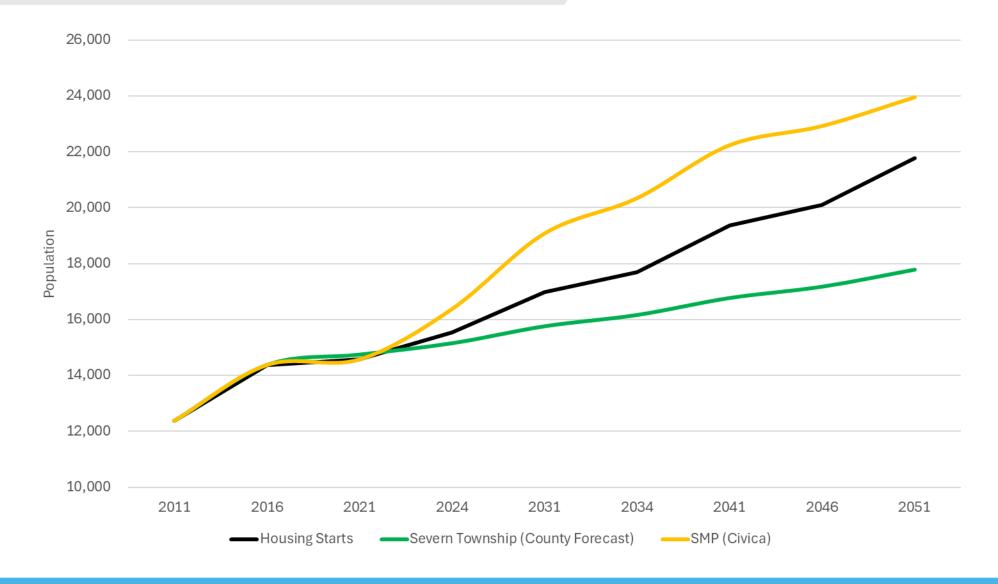
Final Report

Documentation of Recommended Alternative Solutions for Servicing

Council Presentation

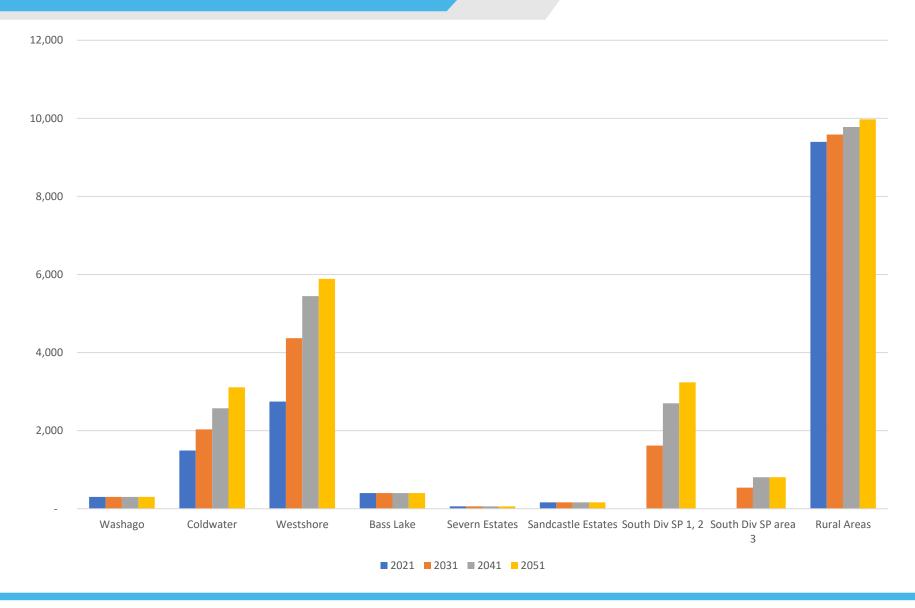
TBD

Notice of Completion


TBD

Growth Trends

Housing Units and Population


	Housing	Equivalen	t Resident	ial Units	Po	opulation (Equivalent	 t)
	2021	2031	2041	2051	2021	2031	2041	2051
Severn Township (County Forecast)					14,750	15,763	16,776	17,790
Washago	121	121	121	121	304	304	304	304
Coldwater	553	753	953	1,153	1,493	2,033	2,573	3,113
Westshore	1,018	1,618	2,018	2,181	2,749	4,369	5,449	5,889
Bass Lake	161	161	161	161	404	404	404	404
Severn Estates	25	25	25	25	63	63	63	63
Sandcastle Estates	65	65	65	65	163	163	163	163
South Div SP 1, 2*		600	1,000	1,200	-	1,620	2,700	3,240
South Div SP area 3*		200	300	300	-	540	810	810
Rural Areas	5,222	5,327	5,433	5,542	9,400	9,588	9,780	9,975
Total	7,165	8,870	10,076	10,748	14,576	19,084	22,246	23,961
Growth Rate per Planning Period		1,704	1,207	672		4,508	3,162	1,716
Avg. Annual Absorption Rate (Units p	er year)	170	121	67				

^{*} Part of existing Secondary Plan- Population and Servicing Solutions provided by proponent and following separate process

Population Growth Comparison

Alternative Solutions

Proposed Alternatives

- a. Do Nothing
- b. Demand Management (Limit Growth)
- c. Capacity Optimization (I&I reduction, leak detection in water)
- d. Asset Expansions/Additions

Evaluation Criteria: What Key Issues Will be Addressed?

- Potential impacts to existing natural environment
- Protecting wildlife and species at risk
- Able to meet existing and future demands
- Aligns with existing and planned infrastructure
- Ease of construction and integration with existing system
- · Capital planning and life cycle costing
- Stakeholder input

Optimization Alternatives

Wastewater Alternatives

INFLOW AND INFILTRATION REDUCTION

CROSS CONNECTION ELIMINATION

Water Alternatives

REDUCE WASTE

SYSTEM LEAK REDUCTION

OPTIMIZE SYSTEM PRESSURE

OUTDOOR WATER USE MANAGEMENT

PUBLIC EDUCATION

Stormwater Alternatives

RAINFALL HARVESTING

RECHARGE SYSTEMS

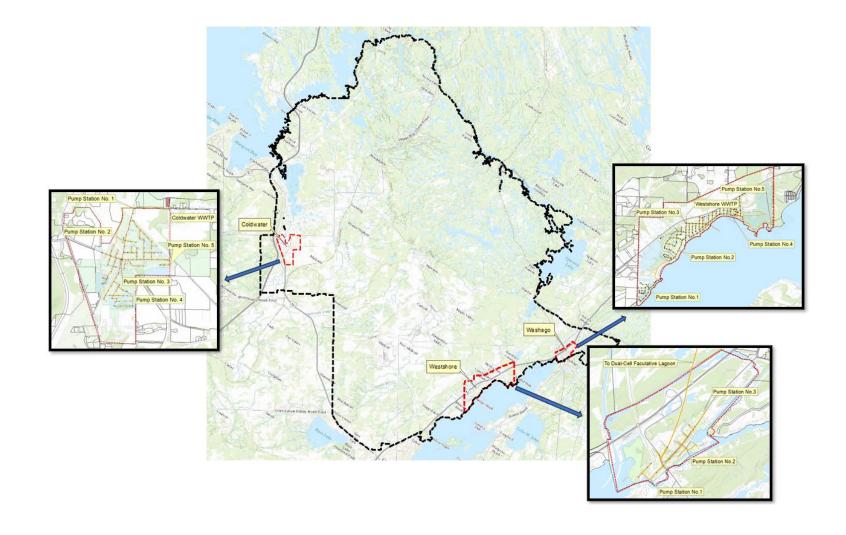
DISCHARGE QUANTITY AND QUALITY CONTROL

Study Area – Wastewater System

Current Levels of Wastewater Service in Severn:

Wastewater Service

Fully serviced settlement areas


- Coldwater
- Washago
- Westshore

Private Systems (No Service)

Wells and Septic Systems or Other

- Ardtrea
- Fesserton
- Port Severn
- Severn Falls
- Marchmont

Study Area – Water System

Current Levels of Water Service in Severn:

Water Service

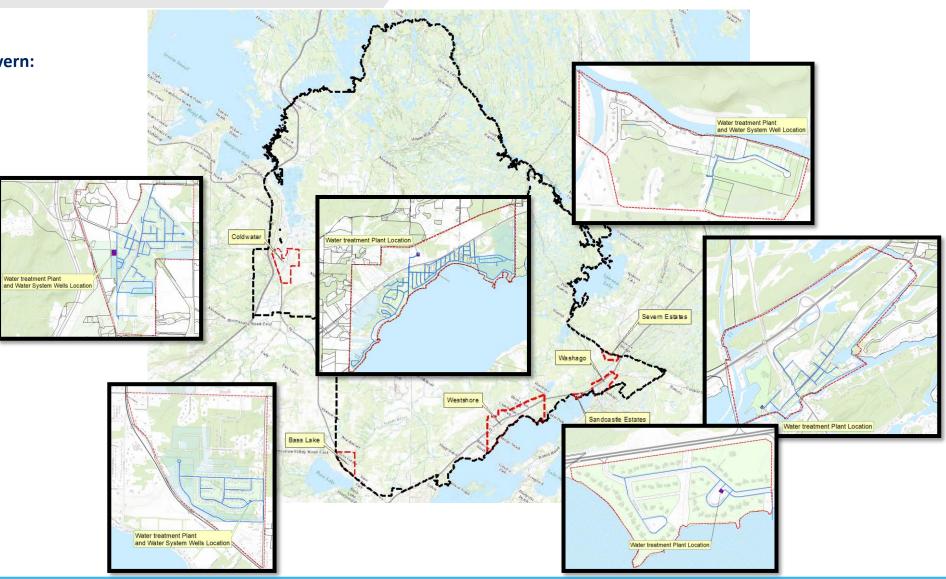
Fully serviced settlement areas

- Coldwater
- Washago
- Westshore

Water Supply Service Only

Municipal Drinking Water Systems

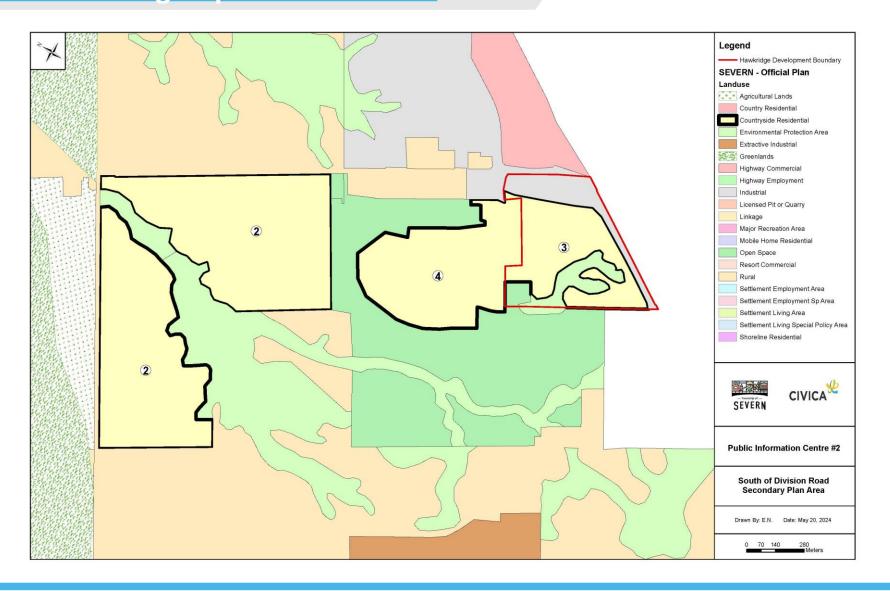
- Bass Lake Woodlands*
- Sandcastle Estates
- Severn Estates



Private Systems (No Service)

Wells and Septic Systems or Other

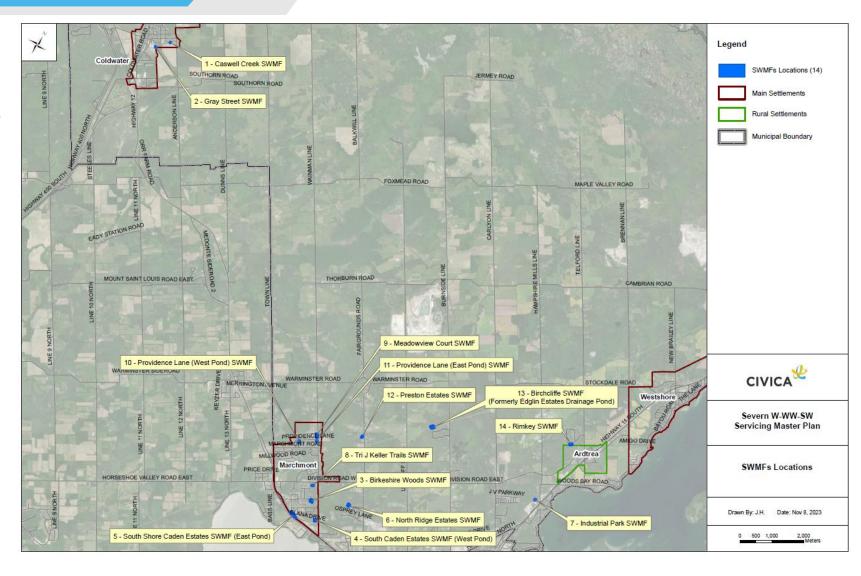
- Ardtrea
- Fesserton
- Port Severn
- Severn Falls
- Marchmont


^{*}partial servicing in sections

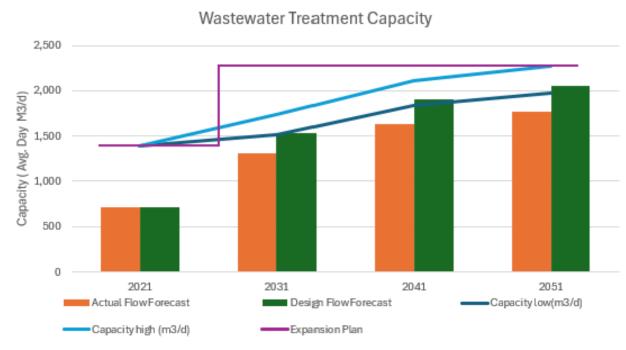
Future Areas SP1 SP2 and SP3 as Noted by the Planning Department

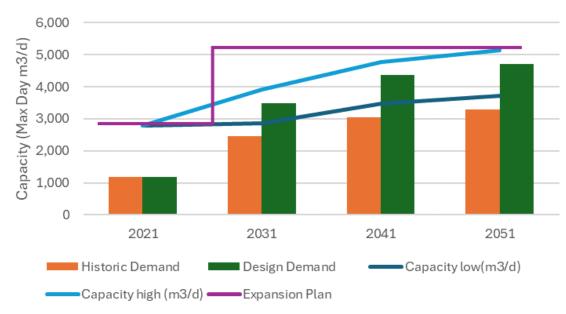
Study Area – Stormwater System

Current Levels of Stormwater Service in Severn:

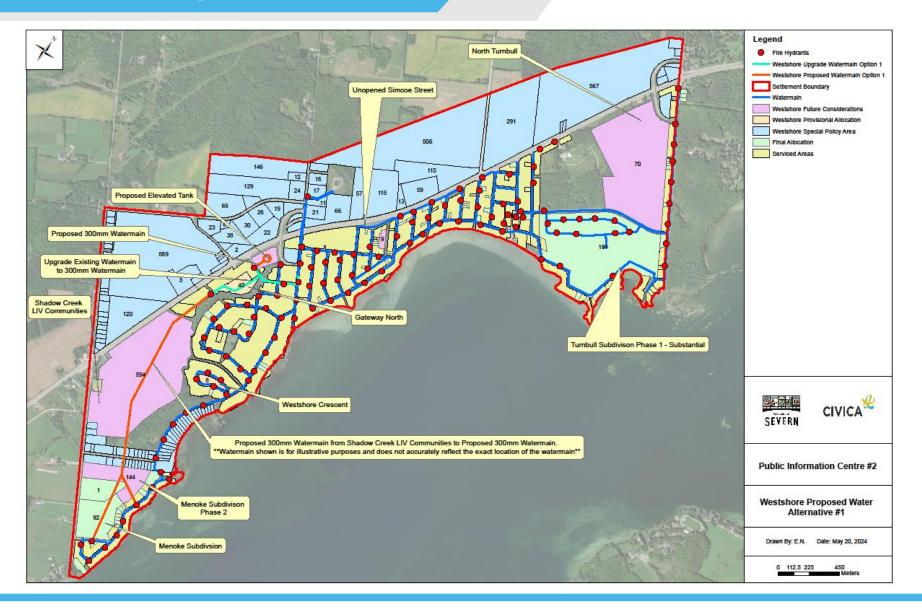

400 km of Open Ditches, Catch Basins, and Manholes

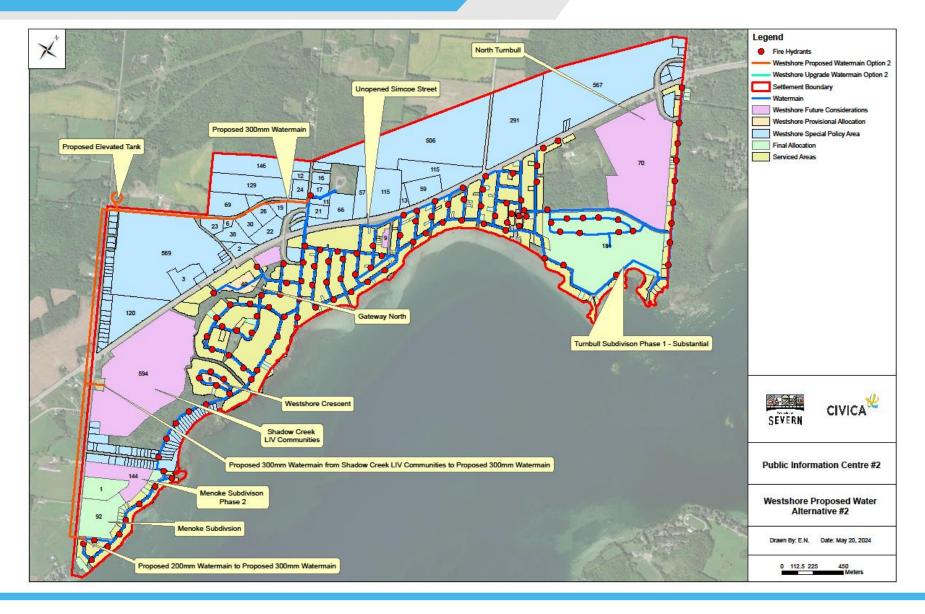
7.9 km of Collection Storm Sewers


13 Stormwater Management Facilities

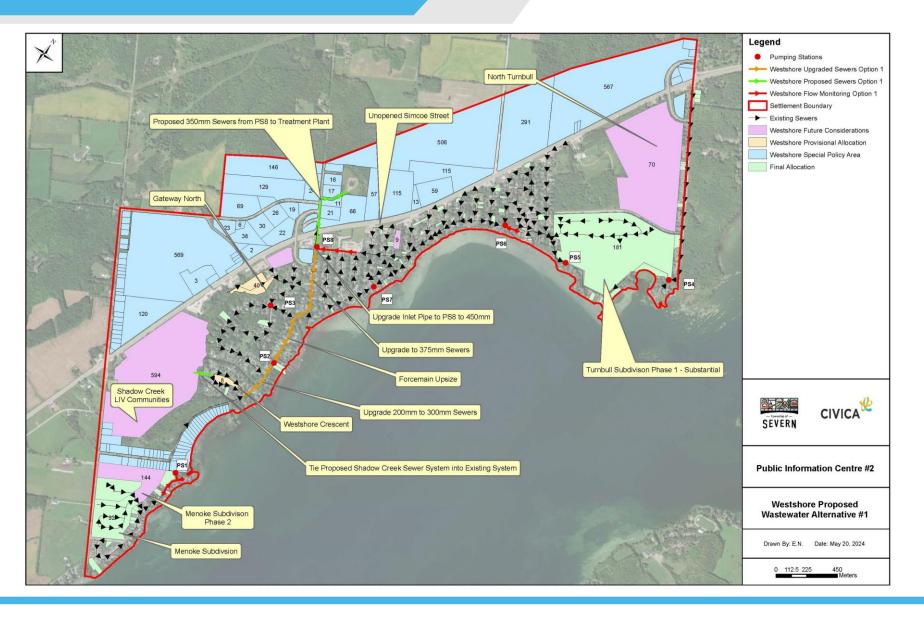

Westshore Treatment Capacity

- Treatment plant built in 2006
- Water and wastewater system expansion required to meet growth
- Wastewater process improvements required and assessment is underway to meet current performance capacity
- Funding identified in Development Charge Forecast for water and wastewater expansions
- Recommendation to proceed with expansion studies by 2026 to meet growth targets by 2031

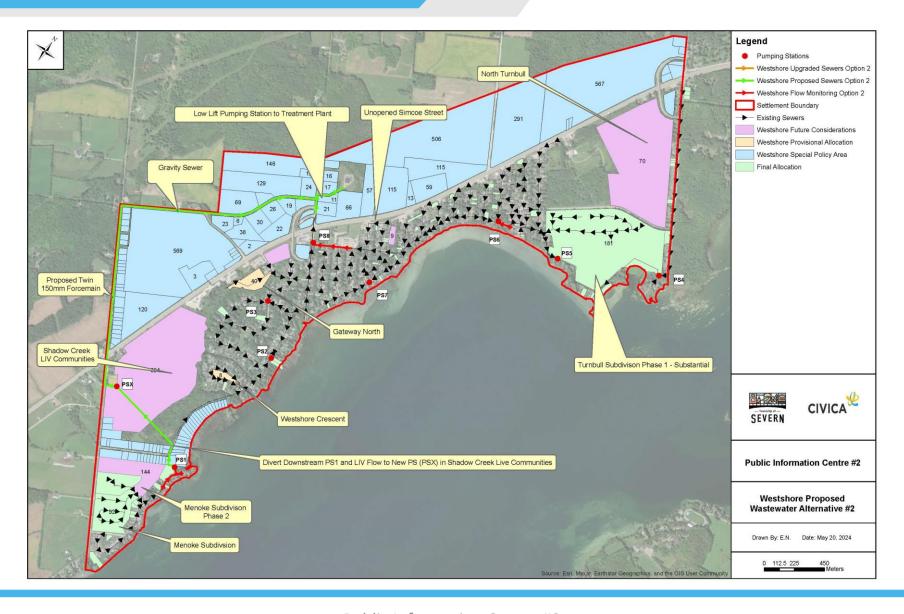

Water Treatment Capacity


Westshore Water System Alt 1

Westshore Water System Alt 2


Westshore Water Alternatives

Alternative 1				Cost Estimate								
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate			
Water System		As part of LIV development neet to provide	Upsize Grand Tamarack Cres	m	\$1,200	300	\$360,000	\$36,000	\$396,000			
	Grand Tamarack Cres	300mm or greater capacity to connect from	from 200 to 300		Ć4 200	500	¢600.000	¢50,000	¢660,000			
		Bayou at Tamarack Cres to Wood Ave (or equivalent)	Upsize from Grand Tamarack at take off to Webers to reach LIV	m	\$1,200	500	\$600,000	\$60,000	\$660,000			
			development									
			New Elevated Tank	m3	\$14,000	200	\$2,800,000	\$280,000	\$3,080,000			
	Future Ring Loop for Goldstein Rd	To increase supply for fire protection on	To be included with future									
	(identified as internal to development	Goldstein via future development north of	development servicing									
	and not shown on figure)	Turnbull Dr.										
Total									\$4,136,000			
Alternative 2							Cost Es	stimate				
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate			
Water System	300mm Ring loop along Menoke	Provide supply to lower area to meet future fire	New 300 mm watermain	m	\$1,200	4,000	\$4,800,000	\$480,000	\$5,280,000			
	Beach Rd from Couchiching Ave to Stockdale Rd and to Plant.	flow needs and provide redundancy of supply.	New Elevated Tank	m3	\$14,000	200	\$2,800,000	\$280,000	\$3,080,000			
	Future Ring Loop for Goldstein Rd	To increase supply for fire protection on	To be included with future									
		Goldstein via future development north of	development servicing									
		Turnbull Dr.										
Total									\$8,360,000			

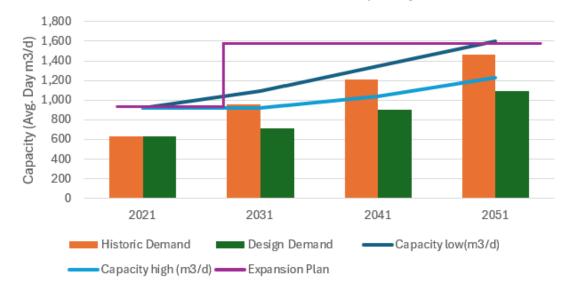

Westshore Wastewater System Alt 1

Westshore Wastewater System Alt 2

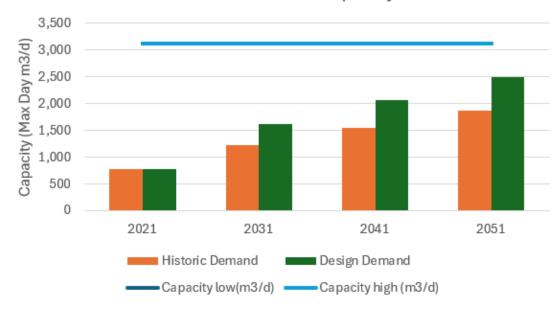
Westshore Wastewater Alternatives

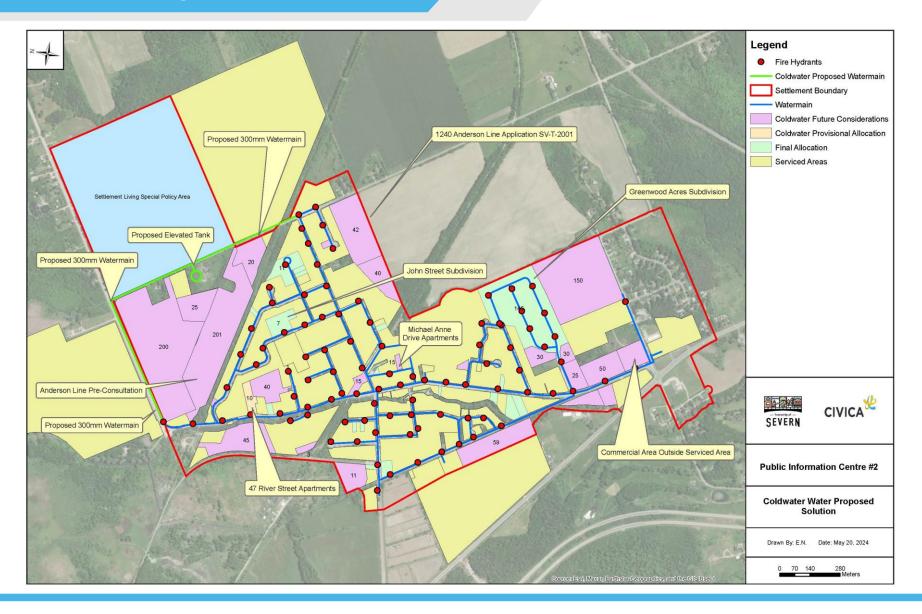
Alternative 1							Cost Es	timate	
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate
Wastewater	Service Shadow Creek internally	Levarage existing network were available and	PS2 Gravity sewer section	m	\$1,800	330	\$594,000	\$59,400	\$653,400
Systems		upsized sections as needed. Impact of significant	upgrade from 250mm to 300						
		upsizing evident in the alternative	mm						
			Upgrade PS 2 station from 17	LS		1	\$600,000	\$60,000	\$660,000
			I/s to 39 I/s						
			Upgrade PS 2 forcemain from	m	\$1,800	500	\$900,000	\$90,000	\$990,000
			150 mm to 250 mm						
			Upgrade sewer along Bayou	m	\$2,500	460	\$1,150,000	\$115,000	\$1,265,000
			from 250 mm to 375 mm						
			Upgrade PS 8 from 44 l/s to 82	LS		1	\$800,000	\$80,000	\$880,000
			I/s						
			Upgrade PS 8 forcemain from	m	\$3,300	600	\$1,980,000	\$198,000	\$2,178,000
			250 mm to 350 mm						
Total									\$6,626,400

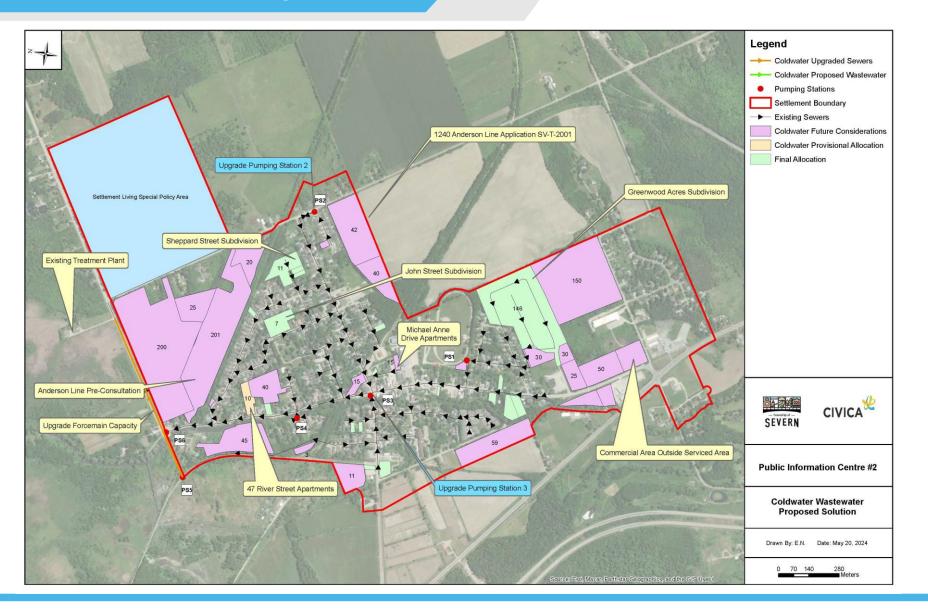
Alternative 2							Cost Est	timate	
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate
Wastewater	Redirect PS 1 from discharge to PS2 to	leverage alternate flow route to treatment plant	150 mm forcemain Twin from	m	\$1,400	600	\$840,000	\$84,000	\$924,000
Systems	discharge to new LIV Shadow Creek PS	to relieve future capacity constraints at Main	PS1						
		pumping station (PS1 peak flow of 15 l/s,	New Shadow Creek PS 50 I/s	LS		1	\$3,538,000	\$353,800	\$3,891,800
		Shadow Creek peak flow of 32 l/s)	New twin 250 mm forcemain	m	\$2,000	2,000	\$4,000,000	\$400,000	\$4,400,000
			with hwy crossing to Stockdale						
			New Gravity Sewer to	m	\$1,200	1,800	\$2,160,000	\$216,000	\$2,376,000
			treatment plant 375mm						
			Low lift station at treatment	LS		1	\$2,500,000	\$250,000	\$2,750,000
			plant (50l/s)						
Total									\$14,341,800


Monitor flow condition for inlet sewer for PS 1, 6, and 8 for both alternatives as development proceeds

Coldwater Treatment Capacity


Wastewater Treatment Capacity

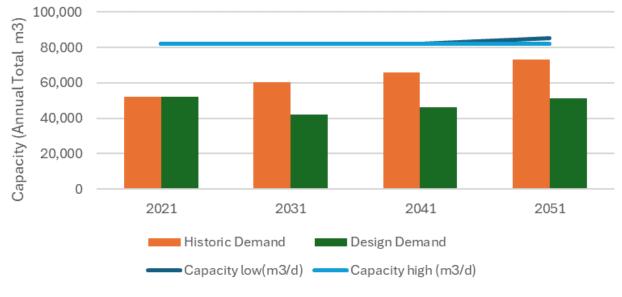

Water Treatment Capacity


Coldwater Water System

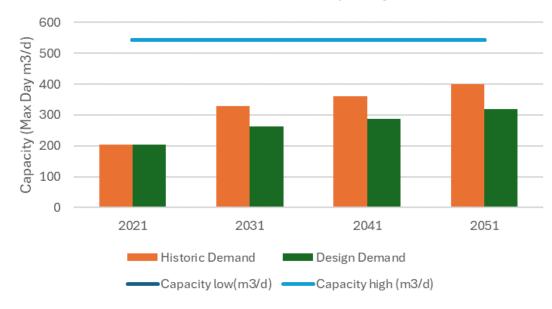
Coldwater Wastewater System

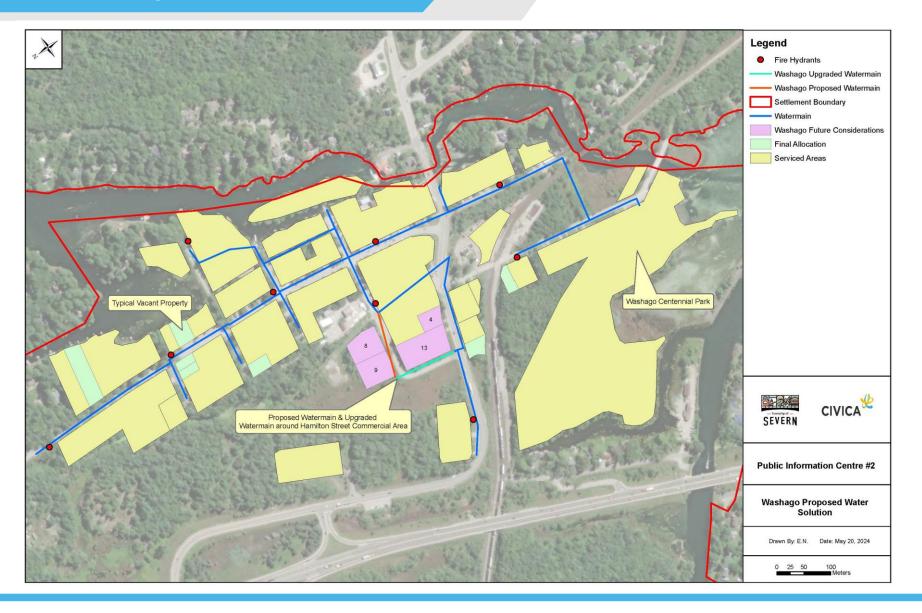
Coldwater Preferred Alternative

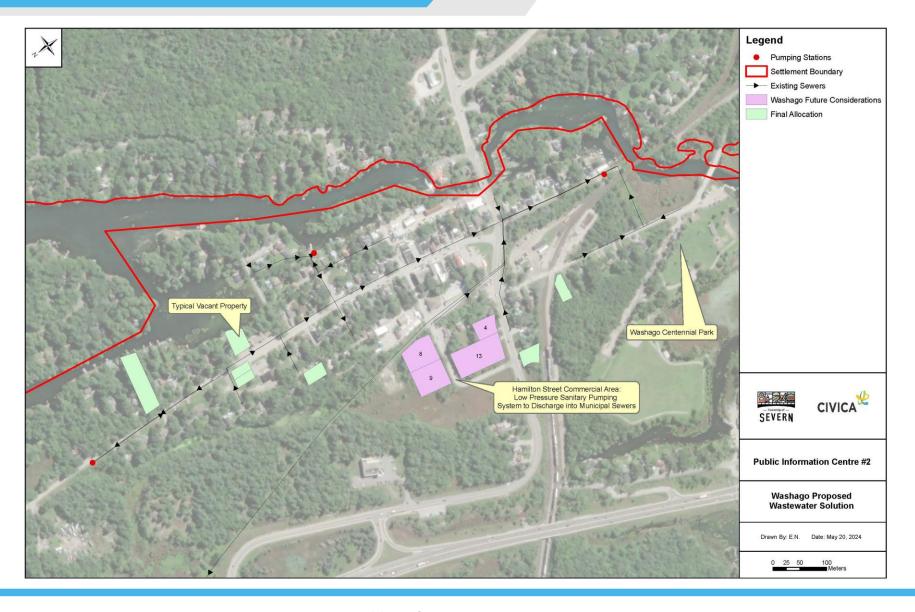
Alternative 1				Cost Estimate								
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate			
Water System	River St along Upper Big Chute Rd,	main and to serve existing and future population		m	\$1,200	1,600	\$1,920,000	\$192,000	\$2,112,000			
	then Anderson Line to Gray St.	with firm fire flow capacity storage and pressure.	New Elevated Tank	m3	\$14,000	200	\$2,800,000	\$280,000	\$3,080,000			
Total						•			\$5,192,000			


Alternative 1							Cost Es	stimate	
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate
Wastewater	Increase forcemain capacity to WWTP	Future sewage flows will require increased	Forcemain increase currently in	m	\$1,800	780	\$1,404,000	\$140,400	\$1,544,400
Systems		capacity	design with WWTP upgrade						
			(Estimate budget)						
	PS 3 (Hardware pumping station) upgrade	Existing station has capacity challenges and is in	Upgrade PS 3 station from 17	LS		50 l/s	\$3,500,000	\$350,000	\$3,850,000
		need of replacement. Assumed replacement cost	I/s to 50 I/s with infrastructure						
	existing system capacity	to accommodate new growth expansion.	replacements						
	PS 2 (at Anderson Line) to be	Existing PS 2 station serves a small population	Decommission Station and	LS		1	\$300,000	\$30,000	\$330,000
	decommissioned and flow incorporated	and there is benefit to redirect flow to future	redirect sewer						
	into 1240 Anderson Line Development	station required by new development							
			New station with revised						
			capacity to be provided through						
			development						
Total									\$5,724,400

Washago Treatment Capacity


Wastewater Treatment Capacity


Water Treatment Capacity


Washago Water System

Washago Wastewater System

Washago Preferred Alternative

Alternative 1							Cost Es	timate	
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate
•	Proposed 200 mm watermain to complete reliable supple if future	Servicing will be require where future demands are realized for fire flow and reliability of service		m	\$1,200	240	\$288,000	\$28,800	\$316,800
Total									\$316,800

Alternative 1				Cost Estimate							
	Description	Rationale	Infrastructure	Unit	Unit Cost	Quantity	Base	Contingencies (10%)	Budget Estimate		
Wastewater	Hamilton Street Commercial area private	Due to grades, future development will be	By development								
Systems	low pressure sanitary pumping	required to provide low pressure sewage									
		pumping to allow for discharge to existing									
		gravity sewers.									
Total									\$0		

System Improvement Recommendations

Water System Efficiency and Optimization Recommendations

Description	Rationale	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Prepare and update WRc	Standard methodology to define and track water	\$15,000	\$7,000	\$7,000	\$7,000	\$7,000	\$7,000	\$7,000	\$7,000	\$7,000	\$7,000
Water Loss reporting for	consumption by category										
Outdoor water management	Review and enhance water use awareness and	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
and public education	summer outdoor use education to target overall										
	water consumption reduction										
Total		\$20,000	\$12,000	\$12,000	\$12,000	\$12,000	\$12,000	\$12,000	\$12,000	\$12,000	\$12,000

Wastewater System Efficiency and Optimization Recommendations

Description	Rationale	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Inflow and Infiltration Reduction	To determine amount of groundwater and rain	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000
- Flow Monitoring	water entering the system and where to focus										
	targeted efforts for remediation. (assume										
	rotation of 5 flow meters and rain guage site)										
Inflow and Infiltration Reduction	To assess potential for direct connections to	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000
- Smoke and Dye testing	extraneous sources										
System modelling software	Confirm preferred model software support	\$20,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
selection and model	method and develop spacial model for current										
development	and future assessments										
Remediation of maintenance	Investment in physical remediation based on	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000
hole and line defects	prioritized defect plan										
Total	·	\$150,000	\$135,000	\$135,000	\$135,000	\$135,000	\$135,000	\$135,000	\$135,000	\$135,000	\$135,000

System Improvement Recommendations

Stormwater System Efficiency and Optimization Recommendations

	and Optimization Recommendations				1		1		1		1
Description	Rationale	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Investigate separate stormwater	A significant portion of sanitary flow is derived		\$30,000								
foundation drain system for	from foundation and sump pump discharges.										
Coldwater due to high I/I levels	There is a benefit to consider alternative										
	collection of these flows through a third pipe										
	system										
Prepare a study to confirm	Pond cleanout based on sediment accumulation	\$80,000									
sediment accumulation and	and pond performance is a requirement of the										
remediation requirements for	CLI-ECA apprrovals										
Anticipated Stormpond	Assumed cleanout program is developed and		\$600,000		\$600,000		\$600,000		\$600,000		\$600,000
cleanout costs	implemented										
Additional support for other	These include additional stormwater system		\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000
CLI-ECA requirements	monitoring, reporting and remediation planning.										
	Funding based on anticipated annual investment										
Public Education and	stormwater storage and reuse, discharge of		\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
			\$3,000	33,000	\$5,000	\$3,000	\$5,000	33,000	\$3,000	33,000	\$3,000
awareness	banded products into storm sewer and private										
	side stormwater and sump pump water										
	management										
Total		\$80,000	\$645,000	\$15,000	\$615,000	\$15,000	\$615,000	\$15,000	\$615,000	\$15,000	\$615,000

Next Steps

Following Public Information Centre #2, we will:

- Review public feedback to better understand the priorities of Township of Severn residents and stakeholders
- Develop alternative solutions to meet servicing system needs, issues, and opportunities, building on your input
- Develop recommended infrastructure projects and supporting policies and strategies
- Present recommended projects, strategies and other solutions in the Servicing Master
 Plan that will be presented to Council date TBD

Who's Listening?

Derek Burke

Director of Public Works Township of Severn 705-325-2315 ext. 230 dburke@severn.ca

Ilmar Simanovskis, P.Eng

Consultant Project Manager Civica Infrastructure Inc. 905-505-5080 isimanovskis@civi.ca

Share the SMP

Provide your feedback on the SMP objectives, your thoughts on sanitary and stormwater system issues, and your suggestions on where we can best focus infrastructure improvements in the Township of Severn.

Help shape the SMP study by visiting **Severn.ca/servicingplan** to:

- Submit questions or comments to the project team
- See the latest updates and future public consultation opportunities

